Почему солнечные панели – это не экономия, а ловушка для простаков

Срок службы и окупаемость солнечных панелей

В гелиосистемах нет никаких подвижных механических частей, что делает их долговечными и надёжными. Срок эксплуатации подобных батарей 25 лет и дольше. Если их правильно эксплуатировать и обслуживать, то они могут прослужить и 50 лет. Кроме этого, в них не бывает каких-то серьёзных поломок и от владельца требуется лишь периодически чистить фотоэлементы от грязи, снега и т. п. Это требуется для увеличения КПД и эффективности гелиосистемы. Длительный срок службы зачастую становится определяющим при решении покупать или нет солнечные батареи. Ведь после прохождения срока окупаемости, электроэнергия от них будет бесплатной.

Установка солнечных батарей на крыше

На срок окупаемости оказывают влияние следующие факторы:

  • Тип фотоэлементов и оборудования. На окупаемость оказывает влияние как величина КПД, так и первоначальная стоимость фотоэлементов;
  • Регион. Чем выше интенсивность солнечного света в вашей местности, тем меньше срок окупаемости;
  • Цена оборудования и монтажа;
  • Цена электроэнергии у вас в регионе.

В среднем срок окупаемости по регионам составляет:

  • Южная Европа ─ до 2 лет;
  • Средняя Европа – до 3,5 лет;
  • Россия ─ в большинстве регионов до 5 лет.

Эффективность солнечных коллекторов для сбора тепла и батарей для получения электрической энергии постоянно увеличивается. Правда не так быстро, как хотелось бы. Специалисты отрасли занимаются повышением КПД и снижением себестоимости фотоэлементов. В итоге всё это должно привести к уменьшению срока окупаемости и широкому распространению солнечных батарей.

Вернуться к содержанию

Как увеличить КПД панелей

Можно ли повысить эффективность солнечных батарей? Чтобы получить максимальный эффект от установки солнечной системы необходимо соблюдать все правила эксплуатации панелей: контролировать угол наклона, правильно разместить с возможностью проветривания, очищать поверхность фотоэлементов и исключать затемненные участки. Кроме того, отдавайте предпочтение тем батареям, которые изготовлены из высококлассного кремния. Именно они смогут обеспечить наивысший КПД.

Повысить КПД солнечной панели

Сегодня этим вопросом занимаются научно-исследовательские центры, и данное направление является приоритетным. Инженерами предпринимаются попытки производить такую солнечную систему, которая будет состоять из модулей разных материалов. Смысл такой задумки заключается в том, чтобы разные материалы и несколько слоев могли впитывать в себя все типы энергии: как инфракрасное излучение, так и ультрафиолетовое. Подобное решение сможет повысить КПД в два, а то и в три раза. Ученые предполагают, что такие современные модули смогут производить до 90% эффективности. Более высокий процент производительности позволяет не только вырабатывать больше энергии, но и сократить срок окупаемости.

Где теряется производительность

В сами элементы заложены очень большие возможности. Теоретически, из расчета, КПД солнечной панели может составлять 80–87 %!

Но из практики мы знаем, что их эффективность крайне мала. Коэффициент полезного действия фактически находится в пределах 15–20 %. Именно такую часть электричества способны вырабатывать современные солнечные панели из всего солнечного потока, попадающего на принимающие фотоэлементы.

  1. Несовершенство технологии производства.
  2. Недостаточно чистые компоненты для изготовления.
  3. Погрешности при сборке.

Это всего лишь малая часть тех составляющих причин, куда уходит энергоэффективность.

Также необходимо учитывать и погодные условия. Какая бы современная солнечная панель не была — она не будет эффективно работать, если солнце закрыто облаками или расположено над горизонтом. Эту причину сложно регулировать. Значит единственное средство — повышать эффективность самих панелей.

К этим перечисленным трудностям следует добавить и то, что процесс очистки и получения кристаллов сам по себе – достаточно дорогая процедура. Без этого необходимого комплекса высокотехнологичных работ, трудно добиться ожидаемого эффекта.

Конечно, есть солнечные панели с высоким КПД. Но их конечная стоимость настолько высока, что недоступна для массового покупателя.

Причины потери производительности

Снижение производительности — это, прежде всего, потери прямого дохода для владельца солнечной станции. Приведем несколько причин.

Солнечные батареи со временем теряют свою первоначальную мощность. Производительность электростанции снижается из-за снижения интенсивности УФ-излучения и воздействия экстремальных погодных условий. К счастью, в наших широтах интенсивность УФ-излучения низкая, и мы редко сталкиваемся с ураганами, смерчами или песчаными бурями. К реальным климатическим условиям, влияющим на долговечность фотоэлектрических панелей, относятся:

1. Высокие температуры. Солнечные батареи теряют свою эффективность в жаркие летние дни, что способствует их интенсивному износу! Солнечные батареи теряют в среднем около 1% эффективности в год, что считается хорошим показателем качества. 2. Град. Солнечная батарея, изготовленная по современным стандартам, может выдержать довольно мощный град. Большинство производителей указывают, какой именно град или шторм может выдержать их продукция. Однако довольно большая буря может нанести значительный ущерб даже очень хорошим стеклянным модулям. В Европе эту проблему минимизируют благодаря приобретению соответствующего полиса страхования. 3. Замерзание талой воды. Фотоэлектрический модуль, в целом, работает лучше зимой. Снег, как правило, сходит с солнечных панелей под воздействием солнечного света. Однако, при определенных условиях, например, пологом угле расположения солнечных батарей, на панелях может замерзать вода, которая при расширении повреждает поверхность панели. 4. Трещины и микротрещины на фотоэлементах. Эта проблема встречается едва ли не чаще других. Причем это основная причина потери мощности фотоэлектрических панелей. Трещины могут иметь различный характер и возникать как из-за неправильной установки оборудования, так и из-за механических повреждений. Большие трещины можно обнаружить во время обычной очистки панелей. Выявление микротрещин возможно только благодаря специальному методу инфракрасного теста. 5. Горячие точки или ячейки нагрева. Горячие точки — это отдельные участки солнечной батареи с повышенной температурой. Местное повышение температуры отдельного участка является причиной снижения эффективности и ускоряет старение всей панели. Для того чтобы предотвратить образование горячих точек, стоит на этапе монтажа избегать установки панелей в затененных местах и регулярно их мыть. 6. Деламинирование. Так называется отслойка специальной пленки на основе пластика, которая защищает солнечные батареи от чрезмерной влажности или повреждений. Деламинирование может стать причиной не только потери производительности одного фотомодуля, но и выхода из строя части солнечной электростанции. Объясняется это спецификой коммутации солнечных панелей (параллельное или последовательное соединение). Следствием может стать короткое замыкание неизолированных контактов солнечной батареи. 7. Браунинг или просто выгорание — это процесс, который является следствием химического взаимодействия несовместимых компонентов. Поэтому фотоэлектрические модули могут перегреваться и уменьшать свою эффективность. 8. Разгерметизация. Специальное закаленное стекло способствует более длительному сроку эксплуатации монокристаллических и поликристаллических солнечных панелей. Для полной устойчивости к влаге производители используют специальные герметики. Герметизируются стык алюминиевой рамы и стекла, электротехническая монтажная коробка. Сам факт разгерметизации говорит о том, что при производстве или установке солнечных панелей были нарушены технологические требования. 9. Деформация. Такая проблема может возникнуть, если при производстве солнечных фотомодулей были использованы низкокачественные комплектующие, например, профиль. Если под влиянием погодных условий деформировался фотомодуль, нужно его заменить.

КПД у разных типов солнечных панелей

Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.

Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):

  • уровень инсоляции — 1000 вт/ м2
  • температура — 25°

Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.

Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.

Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.

Из чего сделаны

Чтобы изучить устройство солнечной батареи, нужно разобраться в основных разновидностях, так как технология производства имеет существенные различия в зависимости от используемого сырья:

  1. Батареи CdTe. Теллурид кадмия применяется при изготовлении пленочных модулей. Слоя в несколько сотен микрометров хватает для того, чтобы получить КПД порядка 11% или немного выше. Это откровенно низкий показатель, зато в пересчета на 1 Ватт мощности себестоимость электроэнергии получается как минимум на 30% дешевле, чем у традиционных вариантов из кремния. При том, что данная разновидность намного тоньше и легче.
  2. Тип CIGS. Аббревиатура обозначает, что в состав входят медь, индий, галлий и селен. Получается полупроводник, который также наносится небольшим слоем, но в отличие от первого варианта тут эффективность на порядок выше и составляет 15%.
  3. Типы GaAs и InP отличает возможность нанесения тонкого слоя в 5-6 мкм, при этом КПД будет составлять около 20%. Это новое слово в технологиях добычи электроэнергии из солнечного света. Благодаря высоким рабочим температурам батареи могут сильно нагреваться без потери эксплуатационных характеристики. Но из-за того, что при производстве используются редкоземельные материалы, себестоимость этого типа высока.
  4. Батареи с квантовыми точками (QDSC). В них в качестве поглощающего материала для преобразования солнечной энергии используются квантовые точки вместо традиционных объемных материалов. За счет особенностей настройки запрещенных зон можно делать многопереходные модули, поглощающие солнечную энергию более эффективно.
  5. Аморфный кремний наносится методом испарения и имеет неоднородную структуру. Он не отличается высокими показателями КПД, но однородная поверхность очень хорошо поглощает даже рассеянный свет.
  6. Поликристаллические варианты изготавливаются путем плавления кремния и его охлаждения при определенных условиях, чтобы получить однонаправленные кристаллы. Одно из самых распространенных решений благодаря дешевизне производства и неплохим показателям КПД.
  7. Монокристаллические элементы состоят из цельных кристаллов, разрезанных на тонкие пластинки и легированных фосфором. Самое долговечное решение, у которого низкие показатели деградации и срок службы, составляющий как минимум 30 лет, но чаще всего больше на 10-15 лет.

Батареи из теллурида кадмия – одни из самых выгодных по себестоимости киловатта электроэнергии.

Кстати! Эффективность того или иного варианта зависит от технологии производства, поэтому ее нужно уточнять.

Накопления отходов солнечной энергетики

Солнечные модули, которые отработали свой срок, называются электронным мусором (e-waste). Каждый год мировой рынок фиксирует возрастание доли солнечной энергетики, поэтому мировые объемы e-waste тоже возрастают. Например, в 2018 году объем e-waste равнялся 50 миллионам тоннам. Таким образом, вопрос про утилизацию отработанных модулей очень актуален. Ведь через 20 -30 лет количество e-waste возрастет, поэтому чтобы планета не задохнулась от новых отходов, стоит уже сегодня побеспокоится о строительстве заводов по переработке мусора. В противном случае появится еще один «мусорный остров» Гигантский остров мусора посреди Тихого океана.

Напомним, что в фотоэлементы содержат ядовитые вещества: кадмий, мышьяк, свинец, галлий и другие. В новостях науки неоднократно упоминается, что ведутся разработки по усовершенствованию полупроводников (использовать висмут с сурьмой) для солнечных модулей, но данная технология все еще на этапе разработки.

Какие минусы солнечной энергии?

Недостатки солнечной энергии

  • Расходы. Первоначальная стоимость покупки солнечной системы довольно высока. …
  • Зависит от погоды. Хотя солнечную энергию все еще можно собирать в пасмурные и дождливые дни, эффективность солнечной системы падает. …
  • Хранение солнечной энергии стоит дорого. …
  • Использует много места. …
  • Связано с загрязнением.

Дают ли солнечные батареи бесплатное электричество? Бесплатные солнечные панели на самом деле не бесплатно; вы будете платить за электроэнергию, которую они производят, как правило, по договору аренды солнечной энергии на 20–25 лет или договору о покупке электроэнергии (PPA).

Стоит ли идти на солнышко?

Да, солнечная энергия в Калифорнии того стоит

Солнечная энергия предлагает низкий углеродный след, чистую, надежную энергию, которая может поддерживать ваше электричество даже в случае сбоя в сети, а также экономию для любого бюджета. Являетесь ли вы домовладельцем или арендатором, солнечная энергия — это больше, чем далекая мечта.

Могу ли я отключиться от сети с солнечными панелями? Для солнечных панелей, подключенных к сети, отказ сети означает отказ солнечной энергии, поэтому, не более того, солнечные панели не могут отключить вас от сети. Даже если бы они могли работать, когда сеть отключена, у вас все равно была бы большая проблема: поскольку солнечные панели вырабатывают электричество только днем, вы останетесь в темноте на всю ночь.

Как рабо­тают сол­неч­ные батареи другими словами

Сол­неч­ная бата­рея рабо­тает сле­ду­ю­щим образом.

  1. Фотоны уда­ря­ются о поверх­ность сол­неч­ной бата­реи и погло­ща­ются её рабо­чим мате­ри­а­лом, напри­мер крем­нием.
  2. Фотоны, стал­ки­ва­ясь с ато­мами веще­ства выби­вают из него его род­ные элек­троны. В резуль­тате чего воз­ни­кает раз­ность потен­ци­а­лов. Сво­бод­ные элек­троны начи­нают дви­гаться внутри веще­ства, чтобы пога­сить раз­ность потен­ци­а­лов. Воз­ни­кает элек­три­че­ский ток. Так как сол­неч­ная бата­рея это полу­про­вод­ник, элек­троны дви­жутся только в одном направ­ле­нии.
  3. Получаемый ток солнечная батарея преобразует в постоянный и отдает его потребителю или аккумулятору.

Технология, по которой изготовлена солнечная батарея, влияет на её КПД 

Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. 

Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает. 

Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно. 

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей 

Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур. 

В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.

Жизненный цикл солнечных элементов

Напомним, что минимальный срок эксплуатации солнечной панели равен 25 лет. Производители работают над этом вопросом, планируя этот срок увеличить. Разумеется, одной панели будет недостаточно, поэтому понадобится несколько. Сколько? Зависит от площади, где будет производиться монтаж и от мощности, которую хочет получить будущий владелец. Остановимся на затратах для станции:

  • оборудование (вы приобретаете не только солнечные панели, а инвертор, конструкции, кабели);
  • комплекс дополнительных мероприятий (документы, интернет, видеонаблюдение, сигнализация, подведение мощности и другие моменты).

Во всех каталогах указана только стоимость фотопанели, а все остальное упущено. Покупатель узнает о дополнительных расходах уже во время приобретения продукта.

Таким образом, небольшая СЭС (30 кВт) окупиться только через 5-6 лет, при собственном потреблении электроэнергии срок увеличивается. Довольно часто проект окупается как к окончанию службы оборудования.

Чтобы выйти на 25% рентабельности, следует уменьшить стоимость самой станции или позаботится, о том, чтобы увеличить ее производительность.

Это важно! На целесообразность установки фотопанелей влияет расположение местности, где будет производиться установка. Логично предположить, что там, где солнца больше, там и выгодно

Полимерные и органические батареи

Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.

Преимущества:

  1. Низкая стоимость производства.
  2. Гибкий (рулонный) формат.

Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.

Почему мощность солнечной батареи 210 кВт лучше

Отличным вариантом станет солнечная батарея мощностью в 210 кВт. Но и здесь все не так просто.

Первое, что нужно учесть, это то, что солнце не будет светить весь месяц, и именно по этой причине необходимо свериться с архивом погодных условий в регионе, чтобы узнать приблизительное количество пасмурных дней. Как итог, вы увидите, что примерно 7 дней в общем количестве будет особо пасмурных и в этот период солнечные батареи не смогут давать нужное количество энергии.

Кроме этого нужно осознавать, что осеню и весной, день сокращается, а облачные дни увеличиваются, поэтому если вам нужна солнечная энергия, начиная с марта и заканчивая октябрем, то лучше увеличить массив батарей до 50%. Это зависит от региона проживания

Самым плачевным временем года для выработки солнечной энергии станет зима. Это, то время года, когда солнце может не появляться неделями, и в данной ситуации ни один массив не сможет помочь. В такой период лучше пользоваться бензогенераторами или ветрогенераторами. Кстати, последний, может стать основным поставщиком энергии в это время года. Конечно, если в вашей местности есть хорошие зимние ветра, и вы установили достаточно мощный генератор.

Монтаж и обслуживание

После того как я получил свой заказ, мне осталось смонтировать систему и подключить все провода на свои места.

Самый сложный момент был в установке солнечных панелей на крышу дома. Вдвоём это делать, наверное, было бы удобнее, но я делал один.

Панели, не то чтобы очень тяжёлые (21,5 кг), но достаточно большие (164см*99см*4см). И стоя на крыше, производить различные манипуляции с ними было проблематично, а ронять их было жалко.

В общем: неудобно, сложно, но можно, как-то справился. Лучше делать вдвоём, ну, или заказать монтаж у специалистов, если самому не охота лазить по крыше.

Затем, соблюдая полярность, подключил кабели, идущие от панелей к блоку управления. Подключил аккумуляторы.С этим никаких проблем не возникло, в инструкции всё написано, всё есть. Включил систему, всё заработало.

В обслуживании все просто!

Аккумуляторы гелевые, запаяны, и поэтому нет никакой необходимости что- либо доливать в них. Зимой, когда идёт снег, я залезаю по лестнице на крышу и сметаю его с поверхности солнечных панелей. Чем чище поверхность панелей, тем лучше заряжаются аккумуляторы.

Не реже одного раза в неделю нужно полностью заряжать батареи. Хотя система максимально автоматизирована, необходимо мониторить информацию, отображаемую на дисплее блока управления. Почему нужно это делать я опишу дальше.

Расчет производительности

Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.

Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:

  • Тип гелиопанелей и сопутствующего оборудования;
  • КПД фотоэлементов и их стоимость;
  • Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.

Как подобрать нужную производительность

Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.

Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.

С этим определились. Пойдем дальше.

Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.

При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза

Это тоже надо принимать во внимание

Теперь — как рассчитать время работы панелей?

Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.

Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!

Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий