Солнечная панель из СD-дисков без обмана: практический эксперимент

Как сделать солнечную батарею своими руками: пошаговая инструкция

Подготавливаем наш кусок меди, напоминаем размер должен составлять 0.45 м2.
Медную плиту необходимо очистить от пыли и грязи, для этого используем мелкую наждачную бумагу.

Кладем на печь лист, включаем ее и ждем, пока спираль не станет красной, далее засекаем полчаса и снимаем его. Медный лист за это время поменяет свой цвет – это нормально, он должен стать черным.
Выключаем печь, и ждем, пока все остынет.

Когда все остыло, берем наш кусок меди и просто омываем его холодной водой

Обращаем внимание, нельзя отскребать черные остатки окиси.

Теперь начинаем забирать всю нашу конструкцию. Для начала отрезаем точно такой же кусок меди, который мы разогрели

Теперь нужно согнуть два листа таким образом, чтобы они поместились в нашу бутылку, вот так это выглядит на фото. И подключаем «Крокодильчики».

Далее бросаем несколько ложек с соли в теплую воду, хорошо все промешиваем и заливаем в бутылку. Должно остаться не более двух с половиной сантиметров от краев пластины.

Вот так можно получить самую простую солнечную батарею своими руками. Для вас мы нашли вот такое видео. Здесь рассказывают, как подключить уже готовую солнечную батарею к USB порту, чтобы заряжать мобильный телефон. В этом видео вы найдете отличную инструкцию, которая поможем вам сделать все самостоятельно. Похожий принцип в изготовлении термоэлектрического генератора. 

Наш ресурс рекомендует купить маленькие солнечные батареи для зарядки мобильных телефонов уже готовые

Настоит обращать внимание на другие способы, они не дадут толкового результата, вы только потратите свое драгоценное время без смысла. А если ее купить, можете быть уверены, она будет служить вам лучшим образом

И станет палочкой выручалочкой во многих жизненных ситуациях.

Вот еще такие способы существуют, чтобы сделать солнечную батарею для зарядки мобильного своими руками.

И еще один отличный способ.

Статья по теме: Делаем лазерный уровень своими руками.

Классификация фотоэлектрических модулей

Сегодня производство солнечных батарей идёт двумя параллельными путями. С одной стороны на рынке присутствуют фотоэлектрические модули, созданные на основе кремния, а с другой — плёночные, созданные с использованием редкоземельных элементов, современных полимеров и органических полупроводников.

Популярные сегодня кремниевые фотоэлементы подразделяются на несколько типов:

  • монокристаллические;
  • поликристаллические;
  • аморфные.

Для использования в самодельных солнечных батареях лучше всего использовать модули из поликристаллического кремния. Хоть КПД последних и ниже, чем у монокристаллических элементов, но зато на их работоспособность не так сильно влияет загрязнённость поверхности, низкая облачность или угол падения солнечных лучей.

Что же касается батарей из аморфного кремния, то они ещё менее зависимы от погодных условий и за счёт своей гибкости практически не подвержены риску повреждений при сборке. Тем не менее использование их в собственных целях ограничивается как достаточно низкой удельной мощностью на 1 квадратный метр поверхности, так и по причине высокой стоимости.

Кремниевые солнечные элементы представляют собой самый распространённый класс электрических фотопластин, поэтому они чаще всего используются для изготовления самодельных устройств

Появление плёночных фотоэлектрических модулей обусловлено как необходимостью в снижении стоимости солнечных батарей, так и потребностью получить более производительные и долговечные системы. Сегодня промышленность осваивает выпуск тонких гелиоэлектрических модулей на основе:

  • теллурида кадмия с КПД до 12% и стоимостью 1 Вт на 20–30% ниже, чем у монокристаллов;
  • селенида меди и индия — КПД 15–20%;
  • полимерных соединений — толщина до 100 нм, с КПД — до 6%.

О возможности использования плёночных модулей для постройки электрической солнечной станции своими руками говорить пока ещё рано. Несмотря на доступную стоимость, изготовлением теллуридо-кадмиевых, полимерных и меде-индиевых фотоэлементов занимаются лишь отдельные компании.

Такие достоинства плёночных фотоэлементов, как высокий КПД и механическая прочность позволяют с полной уверенностью говорить, что за ними — будущее солнечной энергетики

Хоть в продаже и можно найти батареи, созданные по плёночной технологии, в большинстве своём они представлены в виде готовых изделий. Нам же интересны отдельные модули, из которых можно построить недорогую самодельную солнечную панель — на рынке они пока ещё в дефиците.

Сводные данные по КПД солнечных элементов, которые выпускаются промышленностью, представлены в таблице.

Таблица: КПД современных солнечных батарей

Тип фотоэлементаКоэффициент полезного действия, %
Монокристаллический кремнийот 17 до 22
Поликристаллический кремнийот 12 до 18
Аморфный кремнийот 5 до 6
Теллуридо-кадмиевыеот 10 до 12
На основе селенида меди-индияот 15 до 20
Полимерныйот 5 до 6

Разноцветное молоко, которое движется

Некоторые эксперименты строятся на использовании молока, его химические свойства отлично подходят, чтобы показывать, как действуют моющие средства. Этот эксперимент для дома объясняет, как устроить настоящий цветной взрыв в тарелке.

Что понадобится: тарелка, обычное коровье молоко, ватные палочки, пищевой краситель, средство для мытья посуды.

Что делаем:

  1. Вылейте молоко в тарелку, но не до самых краев;
  2. С помощью ватной палочки точечно нанесите пищевой краситель, можно использовать несколько цветов;
  3. Потрогайте сухой ватной палочкой молоко и покажите ребенку, что ничего не происходит;
  4. Смочите другую палочку в моющем средстве и аккуратно коснитесь краски;
  5. Наблюдайте, как краски начинают «разбегаться» от ватной палочки.

Сколько времени занимает эксперимент: 15 минут

Вашему ребенку нравятся эксперименты?
Это нравится нам обоим – и мне, и ребенку
63.16%

Не особо увлекается экспериментами 13.77%

Еще е пробовали такие эксперименты, но обязательно попробуем! 23.08%

Преимущества и недостатки этого вида энергии

В каждой из отраслей энергетики есть сильные и слабые стороны. Плюсы получения электричества из солнечного света:

  • Не используются ископаемые, жидкие и газообразные виды топлива.
  • Отсутствуют факторы загрязнения окружающей среды.
  • Солнечный свет – бесплатный источник энергии.

Но и без минусов не обошлось:

  • Стоимость батарей хоть и снижается, но все равно находится на высоком уровне.
  • Кроме панелей, нужны аккумуляторы и преобразователи.
  • Срок окупаемости от 5 лет.

Не забудьте учесть ресурс работы аккумуляторов и их периодическую замену. Солнечная энергия не настолько дешевая, как об этом часто утверждают. Однако если нет других вариантов – это подходящий способ электрификации.

Больше всего распространены поликристаллические и монокристаллические панели. Последние дороже, поскольку изготавливаются из однородных кристаллов кремния, больший КПД (около 15%). Поликристаллы производятся из вторсырья, остатков от изготовления монокристаллов и продуктов переработки панелей. Стоят примерно на 15% дешевле, имеют КПД чуть ниже (8–12%), при этом разные источники сходятся во мнении, что они показывают лучшие результаты в пасмурную или облачную погоду поэтому разница в цене не всегда оправдана. Аморфные батареи встречаются редко.

Как отличить поликристаллическую от монокристаллической солнечной панели?

Очень просто, у элементов монокристаллической структуры углы скруглены или сегментные, а цвет ее поверхности однородный: от темно-синего до черного. Поликристаллические элементы имеют форму правильных прямоугольников, а их цвет неоднородный, слегка переливающийся: от синего до почти черного, его текстура отдаленно напоминает камуфляж.

Дополнительные устройства для эксплуатации

Важной особенностью солнечной батареи является сильная зависимость ее выходного напряжения и максимального тока от освещенности. Сделав своими руками батарею с расчетным напряжением в 12В, можно будет обнаружить, что ее реальное напряжение будет колебаться от 9В при слабом и косо падающем свете до 18-19В при ярком прямом освещении

Напрямую подключать солнечную батарею к аккумулятору нельзя – это может привести к перезаряду и выкипанию электролита, если используется свинцово-кислотный аккумулятор. Для герметичных гелевых аккумуляторов перезаряд еще более страшен и приводит к необратимому повреждению.

Во избежание перезаряда аккумуляторных батарей используются специальные контроллеры заряда. Наиболее простые схемы просто отключают аккумулятор по мере набора заряда, а сама зарядка идет лишь тогда, когда напряжение на солнечной батарее выше, чем на аккумуляторе (так называемая схема On-Off). По соображениям безопасности отключение зарядки происходит заведомо раньше полного набора емкости, в среднем на 70 процентах. Более совершенные зарядные устройства на основе ШИМ (широтно-импульсной модуляции, также PWM от Pulse Width Modulation) поддерживают заряд аккумулятора практически на 100%, переходя по мере набора емкости в импульсный режим. Самые сложные и дорогие контроллеры MPPT (Maximum Power Point Tracking, отслеживание точки максимальной мощности) также отслеживают и состояние самой батареи, включая ее температуру, для обеспечения максимального КПД.

Китайские контроллеры заряда производства фирм наподобие EP Solar обойдутся недорого по сравнению с самой солнечной батареей: блок 12В/5А стоит около 1100 р., более мощные и совершенные американские блоки Morningstar имеют цену от 8 тысяч рублей.

Но подобное устройство можно собрать и самостоятельно при наличии соответствующих навыков в радиоэлектронике. Ниже приведена простая схема повышающего контроллера, способного обеспечивать заряд аккумулятора от шестивольтовой солнечной батареи:

Для подстройки максимального напряжения на выходе служит подстроечный резистор R2.

Для солнечных батарей, рассчитанных на 12В, можно использовать следующую схему:

Здесь MainLoad– разъем для подключения аккумулятора, AuxLoad– для дополнительной нагрузки, требующей ограничения напряжения (например, зарядное устройство телефона). Достоинство этой схемы – возможность ее использования с различными типами аккумуляторов, определяемыми положением переключателя:

  • 1.Обслуживаемый свинцово-кислотный аккумулятор
  • 2.Необслуживаемый аккумулятор
  • 3.Батарея литиевых аккумуляторов (3 аккумулятора по 4,1 В)

Сборка

Секции укладываются на стекло подложкой кверху и спаиваются между собой и диодами согласно выбранной схеме последовательно-параллельного подключения. Для фиксации фотоэлементов на месте, а также закрепления проводников и диодов можно использовать прозрачный термоклей или бескислотный уксусный герметик.

Не используйте кислотные (легко отличимые по уксусному запаху) герметики – их использование в закрытом объеме приведет к быстрой коррозии пайки!

После того, как все фотоэлементы размещены, закреплены и спаяны, к выводам припаивается более толстый силовой провод – в нашем случае будет достаточно сечения 1,5 мм2. Он пропускается через отверстие в рамке, которую проще всего сделать из пропитанной олифой деревянной рейки. Метод закрепления стекла в рамке может быть различным:

  • Укладка в паз с последующим закреплением штапиком (наподобие тому, как это делается в оконных рамах);
  • Размещение между двумя рамками с последующей их стяжкой саморезами;

В любом случае, учитывая склонность дерева «дышать», нужно применять при укладе стекла незатвердевающий герметик.

Вместо дерева можно использовать более совершенные материалы при их доступности: алюминиевый уголок, металлопрофиль, использующийся при изготовлении стеклопакетов и так далее.

Стыки конструкции рамки, а также место вывода проводов необходимо дополнительно залить герметиком. После вторичной проверки всех соединений залейте фотоэлементы прозрачным лаком, чтобы полностью загерметизировать и скрепить сборку. После высыхания лака к рамке можно прикрепить заднюю стенку из любого подходящего материала, желательно из полимера наподобие поликарбоната. Пространство между стенкой и залитыми фотоэлементами лучше всего залить доступным компаундом, например – эпоксидной смолой.

Крепить получившуюся батарею, учитывая ее достаточно большую массу, необходимо как минимум в четырех углах рамки. Лучший способ усиления конструкции – собрать вторую рамку из стального уголка таким образом, чтобы солнечная панель достаточно плотно встала в нее, а затем саморезами скрепить их по периметру. Такую конструкцию можно спокойно будет размещать на крыше, стене или наклонной стойке в зависимости от того, как Вы планируете использовать солнечную батарею.

Наиболее оптимальный вариант стационарного размещения батареи – горизонтальный или с небольшим уклоном для стока осадков. В этом случае «электростанция» будет иметь максимальный КПД в полдень, когда влияние погоды и посторонних помех на мощность падающего солнечного излучения минимально. Максимальную токоотдачу в течение длительного времени можно обеспечить, предусмотрев возможность наклона панели вдоль хода солнца хотя бы вручную.

Фольга для батареи – в чем плюс?

Также фольгу можно использовать и при установке панелей, размещая их на поверхность фольги, Вы уменьшаете риск перегрева батареи, что способствует улучшению их эксплуатации и увеличению срока работоспособности. Напоследок один совет: не бойтесь экспериментировать, ведь когда-то те вещи, без которых сегодня мы не представляем своей жизни, людям казались фантастикой. Лишь эксперименты двигают науку вперед. И кто знает, может, Вы придумаете новый способ изготовления солнечной батареи своими руками.

Статью подготовила Абдуллина Регина

Диоды для солнечной панели: подробности на видео:

Критика эксперимента

Из эксперимента Кэлхоуна можно сделать различные выводы, в том числе очень удобные для создания идеологий, позволяющих управлять людьми, и религиозных организаций. В конечном итоге, эти выводы могут вызвать агрессию к различным слоям населения, например, пожилым, бездетным или гомосексуальным людям. Также можно прийти к опасному заключению, что сытая и безбедная жизнь ведет к различным порокам и вырождению. А значит, нужно держать народ в «черном теле», контролировать жизнь людей и ограничивать их свободу.

Однако недостатки выводов самого Кэлхоуна лежат на поверхности. Можно сказать, что они очевидны любому наблюдателю с критическим мышлением.

  1. Во-первых, мы — не мыши. Люди — гораздо более высокоорганизованные существа с несоизмеримо более сложным поведением. А потому нельзя просто так взять и перенести поведение мышей на человека.
  2. Во-вторых, людям никто не создает идеальных условий. До сих пор слишком многие живут в условиях той самой борьбы и перенапряжения, людям угрожают болезни, войны, природные катаклизмы и техногенные катастрофы. Так что о рае говорить преждевременно.
  3. В-третьих, применять библейский термин «смерть духа» к мышам, по меньшей мере, странно. Если уж обратиться к религии, то животные считаются наделенными животной душой, но никак не бессмертным духом, подобным человеческому.
  4. В изгнании и гибели «лишних» особей в популяции проявляется заложенный природой механизм — естественный отбор.

Но кроме того, есть и критика самого эксперимента, его условий как явно неестественных для жизни мышей и потому приводящих к столь плачевным последствиям.

Если обратить внимание на конструкцию мышиных гнезд, то ширина тоннеля 7,6 см позволяла одному самцу легко контролировать сразу 4 гнезда. Таким образом, сильный самец мог сразу же получить «гарем» из 4-х самок, не подпускать к еде других самцов и вынуждать их уйти

В природе такое соотношение, 4 самки на 1 самца, случается крайне редко.
Критики обратили внимание, что поддерживать комфортную температуру летом, при отсутствии очень дорогих в то время кондиционеров, было вряд ли возможным. К тому же, уборка проводилась довольно редко — каждые 4-8 недель. Так что условия жизни мышей были не такими уж радужными: жара, горы помета и останки гниющей пищи, разлагающиеся трупики убитых или умерших особей. Несомненно, в таких условиях мыши должны были испытывать сильный стресс.
Не исключено, что первые экспериментальные мыши состояли между собой в близких родственных связях. Специальный подбор генетически подходящих для скрещивания мышей обошелся бы во много раз дороже, так что, скорее всего, ученые на этом сэкономили.

  1. Если внимательно перечитать ход эксперимента, то можно заметить, помимо признаков возможной близкородственной связи, что мыши начали размножаться далеко не сразу, гораздо позже обычного времени размножения для вивариев. Задержка составляла 2,5 месяца. Причиной мог быть как стресс, так и неприятие самцов самками – «братьев» они могли отгонять от себя, кусая их. Сам Кэлхоун писал, что это время «характеризовалось значительной социальной напряжённостью между восемью мышами, пока они не привыкли друг к другу и к окружающей среде», чего также не случается в обычных вивариях.
  2. Возможно, мышам действительно не хватало места, так как многие самцы могли легко защищать 4 гнезда и кормушку с одной-единственной самкой. Именно поэтому многие мыши были вынуждены жить в центре загона, в очень некомфортных условиях — среди грязи, без укрытия и в постоянной борьбе за еду и воду.
  3. В гаремах собиралось большое количество самок, как старых, так и молодых. А у мышей есть биологическая особенность: если вместе собираются 10 и более самок, то у них прекращаются менструации. К тому же, защищающие гнездо самцы уже постарели и утратили способность к размножению. Это простое объяснение, почему рождаемость мышей стала снижаться.
  4. На самом деле, никаких «гомосексуальных» мышей в эксперименте не наблюдалось, были «гомозиготные».
  5. Те мыши, которых Кэлхоун отсадил отдельно в конце эксперимента, были уже слишком старыми, чтобы размножаться. Самой молодой из них было 480 дней, а фертильность мыши заканчивается в 560 дней.

Можно сказать, что эксперимент даже особенно не нуждается в критике, так как очевидно, что выводы, перенесенные с популяции мышей на будущее человечества, явно «притянуты за уши». К тому же, хотя популяция людей неуклонно растет, говорить о перенаселении планеты пока еще слишком рано.

Пайка светочувствительных пластин

Эта работа требует максимальной осторожности, поскольку светочувствительные элементы являются очень хрупкими. Небольшая нагрузка приводит к их разрушению.. Пластины могут иметь припаянные проводники, а могут и не иметь их

Первый вариант является лучшим, поскольку нужно будет только делать пайку элементов. Второй вариант требует пайки проводников в домашних условиях к пластинам из полупроводника. Он проводится так:

Пластины могут иметь припаянные проводники, а могут и не иметь их. Первый вариант является лучшим, поскольку нужно будет только делать пайку элементов. Второй вариант требует пайки проводников в домашних условиях к пластинам из полупроводника. Он проводится так:

  1. Нарезают плоский проводник на тоненькие полоски. Их длина должна быть немного меньше двойной величины ширины пластины.
  2. Промазывают безкислотным флюсом ту часть лицевой стороны пластины, которая будет контактировать с проводником.
  3. Прикладывают проводник и выступающий его конец фиксируют тяжелым предметом. Другой конец паяют. Паяльник должен иметь мощность 60-80 Вт. Припой используют оловянный. Лудить контакт надо только тогда, когда шина плохо припаивается.

Спайка элементов в единую систему предусматривает:

  1. Переворачивание пластин так, чтобы тыльная сторона оказалась вверху.
  2. Размещение на подложке фотоэлементов. Их ставят в нужной последовательности на одинаковом расстоянии (5 мм) друг от друга. Лучше всего это делать по ранее нарисованной разметке.
  3. Далее к контактам на нижней стороне припаивают провода соседней пластины. Так происходит последовательное соединение фотоэлементов.
  4. На центр тыльной стороны каждой пластины наносят герметик. Спаянный ряд переворачивают, снова выкладывают по разметке и слегка прижимают.
  5. Чтобы обеспечить последовательное соединение рядов, четные ряды разворачивают на 180°.
  6. Ряды припаивают к двум шинам, размещенным на их концах. При этом к одной шине припаивают контакты «+» нечетных рядов и контакты «-» четных. Контакт «-» находится на лицевой стороне, контакт «+» — на тыльной. К другой шине паяют контакты «-» нечетных рядов и контакты «+» четных.
  7. К шине с положительным зарядом припаивают диод Шоттки.
  8. К шинам припаивают кабель, который потом нужно будет вывести через тыльную сторону каркаса.

Образовавшуюся систему проверяют. Выносят подложку с фотоэлементами из дома на солнце и подключают вольтметр. Если показатели отклоняются от плановых, проверяют качество пайки контактов.

После подложку со светочувствительными элементами ставят в каркас и фиксируют шурупами. Если он деревянный, то на рамки наносят герметик, дают ему высохнуть, ставят стекло и закрепляют шурупами. Если каркас алюминиевой, подложку прикрепляют к раме со стеклом.

Солнечная панель из диодов

Для изготовления панели можно использовать диоды в металлических и стеклянных корпусах. Первый вариант мощнее, но более трудоемкий. Второй — проще, хотя для достижения такой же мощности понадобится больше элементов.

Панель из диодов в металлическом корпусе

Диоды КД203

Если говорить о максимальной мощности, которую можно получить с одного кристалла полупроводника, то лучшими в этом отношении будут диоды серии КД203 (КД2010).

При ярком солнечном свете один кристалл способен выдать напряжение порядка 0.7 В при токе до 7 мА.

Чтобы вынуть кристалл кремниевого полупроводника и «открыть» его для освещения, надо:

  • аккуратно разбить керамику и освободить верхний контакт;
  • раскрыть корпус, сняв с основания «крышку»;
  • разогреть диод до температуры плавления олова, которым к кристаллу припаяны контакты;
  • освободить от верхнего жесткого контакта кристалл, а вместо него припаять гибкий проводник.

Диоды средней мощности в металлическом или металлостеклянном корпусе серии Д7, Д214, Д215, Д226, Д237, Д242-Д247 разбирать проще. Сначала бокорезами обрезают жесткий контакт и часть корпуса в виде трубки со стороны анода. А затем вставив нож в шов между основанием и крышкой, открывают корпус. Для облегчения процесса можно предварительно слегка сжать фланец корпуса в тисках, чтобы раскрылась щель между основанием и крышкой.

И эту процедуру надо выполнить с каждым диодом, а их должно быть несколько десятков. В реальных условиях напряжение на одном кристалле будет ниже максимума раза в полтора — около 0.5 В. Чтобы получить на выходе 5 В, надо последовательно соединить в блок 10 кристаллов.

Приблизительно такое же соотношение максимальной и реальной силы тока — рассчитывать надо на величину 4-5 мА. Чтобы «нарастить» силу тока и повысить мощность солнечной батареи, надо параллельно соединить на панели несколько таких блоков.

Сама панель должна иметь вид решетки из расположенных в несколько рядов ячеек двух разных диаметров, расположенных поочередно. Большое отверстие — для посадки корпуса, меньшее — для гибкого проводника, которым соединяют в цепь расположенные рядом диоды. Такая заготовка для диодов в металлическом корпусе без крышки глядит так:

Возможны и другие варианты конструкции панели, но принцип прежний — последовательно-параллельное соединение элементов. Принцип как сделать солнечную батарею из диодов был описан еще в советское время. Ниже приведено фото иллюстрации тех времен, на которой показаны способы разборки элементов и принципиальная схема соединения:

Панель из диодов в стеклянных корпусах

Эти элементы менее мощные и способны «генерировать» токи менее одного миллиампера, но их достоинство в том, что кристалл полупроводника не надо «открывать».

К таким относятся диоды Д223Б, которые способны при оптимальной ориентации относительно яркого солнца выдавать напряжение около 0,3 В, что почти сопоставимо с более мощными аналогами.

Пошаговый процесс изготовления солнечной панели выглядит так:

  • помещают на некоторое время диоды в емкость с растворителем;
  • достают из растворителя элементы и счищают с них размягченную краску;
  • сгибают под 180° выводы анодов (это необходимо для правильного положения кристалла полупроводника относительно плоскости монтажной платы;
  • монтируют на монтажной плате элементы, объединяя их в последовательно параллельные группы согласно схеме соединения.

Вот так выглядит панель, состоящая из 9 параллельно соединенных блоков по 12 элементов в каждом:
Как видно, помещенная на солнце, она выдает напряжение в 2.5 В, а ее мощности хватает, чтобы полностью зарядить за 2 часа ионистор емкостью 0,47 Ф.

Солнечная панель из простых алюминиевых банок

Невероятно практичная конструкция гелионагревателей создается из пивных или банок из под газировки. Стоит всего лишь набрать необходимое количество пустых алюминиевых банок.

Сборка банок в единую систему выглядит следующим образом:

  1. Подготовка банок. Каждая банка промывается, дно пивных банок пробивается для потока воздуха в целях сбора тепла.
  2. Производится обезжиривание поверхности банок.
  3. Подготовленные банки склеиваются друг на друга, как конструктор.

Каркас под теплообменник нужно изготовить из основы, деревянной рамы и оргстекла для лицевой отделки. Подложку основы лучше сделать из фольги. Ведь, как известно, установка подложки из фольги повышает светоотражающие качества основы.

Аккумулирование природного солнечного света является полезным действом, что касается экологии. К тому же производство солнечного света совершенно бесплатно и доступно на любом открытом участке дачи. И к тому же, такая приятная экономия денежных средств вас приятно удивит.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий