Драйверы для светодиодов – все что нужно знать домашнему мастеру

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью диммера или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение – до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем – около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc – сопротивление в килоомах (обычно от 75 до 1000 кОм).

Резистор включается между 8-ой ногой микросхемы и “землей” (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc – 22 = 25/0.24 – 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов – 3А, рабочее напряжение – 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема – это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А)135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь)360 руб/шт.
Транзисторы
40N0611 руб/шт.
IRF741314 руб/шт.
IPD090N03L14 руб/шт.
IRF720117 руб/шт.
50N0612 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В)15 руб/шт.
SS34 (3А, 40В)90 коп/шт.
SS56 (5А, 60В)3.5 руб/шт.

Замена деталей

Устранение обрывов проводки не требует особенной квалификации от домашнего мастера. Гораздо сложнее найти и исправить поломку на печатной плате, драйвере, преобразователе напряжения или матрице. Без специальных знаний тут не обойтись. Также понадобится умение работать с диагностическими приборами и паяльником.

Ремонту или замене могут подлежать такие детали:

  • ограничивающий конденсатор;
  • блок питания;
  • драйвер;
  • матрица.

Конденсатор для ограничения тока

Данный компонент является причиной неисправности, когда лампа прожектора горит неравномерно, постоянно мерцая. Связана такая проблема обычно с тем, что производители, стремясь сэкономить, устанавливают токоограничитель, не соответствующий по характеристикам драйверу.

Блок питания

Частой причиной неправильной работы прожектора является поломка блока питания. В такой ситуации можно приобрести новый блок питания или подобрать данную деталь от другого устройства (например, от принтера). Если решено купить новый блок, рекомендуется взять его с собой в магазин, так как на корпусе указаны его технические характеристики. Чтобы достать блок, вначале нужно разобрать прожектор.

Драйвер

В маломощных моделях часто отсутствует блок питания. В таких случаях вместо блока используется драйвер светодиодного типа. Так как диод не способен получить электропитание прямиком из сети (нужен переменный ток, отличный от сетевого), то и задействуется драйвер. Устройство функционирует с учетом рабочей температуры и времени, изменяя выходной ток, поступающий на светодиод.

Для замены драйвера следует разобрать прожектор, чтобы установить технические параметры драйвера, а затем обратиться в магазин. Так же, как и в случае с блоком питания, можно подобрать подходящий драйвер из другого устройства.

Матрица

Самой распространенной причиной неисправности прожектора является чрезмерный нагрев матрицы, что приводит к перегоранию предохранителей. Прожектор разбирают, после чего достают испорченную матрицу. Для этого откручивают четыре винта и отпаивают токопроводящие детали. Далее наносят слой термопасты на светодиод и припаивают обратно токопроводящие части. Завершают операцию прикручиванием на место матрицы.

В некоторых случаях проводка в матрице идет через отверстия подложки. Она выступает в качестве матричного радиатора. На участках перехода провода должны быть покрыты изоляционным слоем (в первую очередь речь идет о проводе плюса). Это позволит избежать короткого замыкания на корпус устройства.

Нельзя нарушать форму матрицы. Рекомендуется использовать только «родные» винты, чтобы не нарушить конструкцию. Также не следует забывать о полярности: красный проводок — плюс, черный или синий — минус, зелено-желтый провод направляют на корпус.

При обнаружении хотя бы 2-3 перегоревших диодов не следует дожидаться полного выгорания матрицы. В любом случае устройство уже не способно нормально функционировать, в результате чего драйверы и преобразователь напряжения вскоре выйдут из строя.

Печатная плата преобразователя напряжения

Если при проверке платы найдены очевидные признаки перегоревших элементов, понадобится ремонт устройства. На рисунке ниже представлена схема преобразователя для прожектора.

До того, как заменить неработающие части, следует выполнить прозвон светодиодов. Вначале отпаивают одну из ножек платы, так как прозвон впаянных элементов не даст корректного результата. Если появится необходимость, перегоревшие детали меняют на новые.

Ремонт прожектора небольшой мощности

В виде примера рассмотрим ремонт прожектора СДО01-10. Мощность устройства — 10 Вт. Внешний осмотр показывает отслоение защитного покрытия на одном из прожекторов. Также присутствуют темные пятна на излучающей свет поверхности матрицы.

Для упрощения задачи устанавливаем драйвер прожектора с перегоревшей матрицы на светильник с исправной матрицей. На старом драйвере перегорел защитный резистор (его номинал составляет 1 Ом), что указывает на пробой диода в диодном мосте на переходе от ключевого резистора к управляющему. Однако замена драйвера не привела к восстановлению функциональности прожектора.

После дальнейшей проверки выявлен обрыв оптической пары обратной связи. Замена пары дала результат — светильник заработал.

Зачем драйвер светодиодным лампам?

Светодиоды, по сравнению с лампами накаливания, гораздо энергоэффективнее и долговечнее. Они могут работать годами и потребляют в разы меньше электроэнергии, чем обычные лампочки, при стабильном электропитании, за которое и отвечает драйвер.

Светодиоды очень чувствительны к питанию, поступающему на их входы. Пониженных значений они не боятся, а вот повышенные напряжения и токи могут не только существенно убавить ресурс полупроводников, но и вывести их из строя. Задача драйвера – обеспечение светодиодов стабильным током.

Драйвер для светодиодных ламп – источник питания. Он представляет собой электронную схему, на выходе которой оказывается постоянный ток заданной величины.

Светодиодные драйверы, предлагаемые производителями, рассчитаны на напряжения 10, 12, 24, 220 В и постоянные токи 350 мА, 700 мА, 1 А. Обычно драйверы делают под конкретные светильники, но есть в продаже и универсальные приборы, которые подходят к большинству LED-элементов от известных брендов.

Стабилизаторы тока используются в:

  • системах уличного и домашнего освещения;
  • настольных офисных светильниках;
  • светодиодных лентах и декоративной подсветке.

С помощью драйверов изменяют величину яркости и цвет светодиодов. Это делается с помощью регуляторов или пульта дистанционного управления. Светодиодная лампа без драйвера работает нестабильно и рискует быстро выйти из строя.

Замена светодиодов

Главный недостаток SMD элементов – возникновение некоторых проблем с ремонтом оборудования, имеющего их в своем составе. Демонтировать такие элементы, особенно многовыводные, бывает весьма проблематично. Но если прибор двухвыводный, то выпаять его можно при помощи паяльной станции, и тогда ремонт серьезно упрощается. Возьми двойной паяльник, который идет в составе паяльной станции, разогрей одновременно оба вывода диода и этим же паяльником, как пинцетом, сними элемент с платы.

Если в твоей паяльной станции только один паяльник (что бывает чаще всего), то есть еще один вариант. Можно использовать идущий в составе паяльной станции фен. Обдувай неисправный диод феном и одновременно пытайся сдвинуть его с места иголкой или тонким пинцетом. Как только припой расплавится, светодиод легко снимется с платы.

Для ремонта светодиодных ламп вместо паяльного фена можно использовать технический, но диаметр его сопла должен быть минимальным. В противном случае ты будешь греть алюминиевую подложку и либо вообще ничего не выпаяешь (мощности фена не хватит), либо у тебя послетают со своих мест все светодиоды лампы, либо поотваливаются токопроводящие дорожки. В таком случае ремонт серьезно усложнится, если вообще будет возможен.

Как заменить в лампе светодиоды, если нет фена или паяльной станции

Конечно, далеко не у всех для подобного ремонта есть паяльная станция (у меня, к примеру, дома ее нет). В таком случае для ремонта можно воспользоваться обычным паяльником, немного доработав его жало. Просто накрути медный обмоточный провод диаметром 1-2 мм на жало, а концы провода заточи и залуди. Чем не паяльная станция для ремонта и замены SMD деталей?

Демонтаж SMD светодиода с помощью обычного паяльника

Осталось заменить светодиод, и ремонт можно закончить. Сделать это можно паяльником с тонким жалом или обычным, но доработанным для выпайки (см. фото выше). Перед пайкой удали с контактных площадок лишний припой и нанеси на них флюс. Теперь прикладывай новый светодиод на место, соблюдая полярность, удерживай тонким пинцетом и паяй. Имей в виду, что впаянный светодиод должен быть точно того же типа, что и сгоревший. Иначе такого ремонта ненадолго хватит.

Типы драйверов по типу устройства

Устройства, преобразующие источник питания 220 В в индикаторы, необходимые для светодиодов, условно делят на три категории: электронные; на основе конденсаторов; диммируемый.

Рынок осветительных аксессуаров представлен самыми разнообразными моделями драйверов, в основном от китайского производителя. И, несмотря на невысокий ценовой диапазон, из этих устройств можно выбрать довольно приличный вариант

Однако стоит обратить внимание на гарантийный талон, ведь не вся представленная продукция имеет приемлемое качество

Электронный дисплей устройства

В идеале электронный преобразователь должен быть оснащен транзистором. Его роль – разряжать управляющую микросхему. Для устранения или максимального сглаживания пульсаций на выходе установлен конденсатор.

Этот тип устройств относится к категории дорогих, но способен стабилизировать ток до 750 мА, на что не способны балластные механизмы.

Пульсация – не единственный недостаток преобразователей. Второй – это высокочастотные электромагнитные помехи (ВЧ). Таким образом, если другие электрические устройства, такие как радио, подключены к розетке, подключенной к лампе, могут возникнуть помехи при приеме цифровых FM-частот, телевидения, маршрутизатора и т.д.

В дополнительном устройстве высококачественного устройства должно быть два конденсатора: один – электролитический для ослабления пульсаций, другой – керамический для понижения радиочастоты. Однако такое сочетание встречается редко, особенно если речь идет о китайских товарах.

Благодаря высокому КПД (до 95%) такие механизмы подходят для мощных устройств, используемых в различных сферах, например, для тюнинга автомобилей, уличного освещения и бытовых светодиодных источников.

Конденсатор мощности

Теперь перейдем к не очень популярным устройствам на основе конденсаторов. Практически все схемы светодиодных ламп недорогого образца, в которых используются драйверы этого типа, имеют схожие характеристики.

Однако из-за модификаций производителя они претерпевают изменения, например, удаление элемента схемы. Особенно часто из этой части служит один из конденсаторов – пескоструйный.

У таких механизмов всего два преимущества: они доступны для самостоятельной сборки, а их КПД стопроцентный, поскольку потери будут только на переходах и pn резисторах.

Столько же недостатков: низкая электробезопасность и высокая степень пульсации. Второй недостаток – около 100 Гц и образован за счет выпрямления переменного напряжения. ГОСТ предписывает допустимую пульсацию 10-20% в зависимости от назначения помещения, в котором установлен осветительный прибор.

Единственный способ уменьшить этот недостаток – выбрать конденсатор правильного номинала. Однако не стоит рассчитывать на полное устранение проблемы – такое решение может только снизить интенсивность взрывов.

Диммируемые преобразователи тока

Регулируемые диммеры с драйвером светодиодов позволяют изменять показания входного и выходного тока, уменьшая или увеличивая яркость света, излучаемого диодами.

Есть два способа подключения:

  • первый предполагает плавный старт;
  • второй – импульс.

Рассмотрим принцип работы диммируемых драйверов на базе микросхемы CPC9909, используемой в качестве устройства управления цепями светодиодов, в том числе с повышенной яркостью.

При плавном запуске микросхема с драйвером обеспечивает плавное включение диодов с увеличением яркости. Для этого используются два резистора, подключенные к клемме LD, предназначенные для выполнения задачи сглаживания. Так решается важная задача: продление срока службы светодиодных элементов.

Этот же выход обеспечивает аналоговое регулирование: резистор 2,2 кОм заменен на более мощный переменный аналог – 5,1 кОм. Таким образом достигается постепенное изменение выходного потенциала.

Применение второго метода заключается в подаче прямоугольных импульсов на низкочастотный выход ШИМД. В этом случае используется микроконтроллер или генератор импульсов, которые обязательно разделены оптопарой.

С телом или без?

Драйверы доступны с корпусом или без него. Первый вариант – самый распространенный и самый дорогой. Такие устройства защищены от влаги и частиц пыли.

Устройства второго типа используются для скрытой установки и, соответственно, стоят недорого.

Каждый из них отличается допустимой температурой при эксплуатации – на это также необходимо обращать внимание при выборе

Схема драйвера светодиодной лампы 220 в

Светодиодная лампа общего назначения состоит из корпуса, системы охлаждения и электронной части.

К корпусу относится:

  • цоколь;
  • пластиковая колба;
  • рассеиватель света.

Электрическая часть, расположенная в цоколе, тоже различная, количество компонентов зависит от цены:

  • при стоимости лампы 2-3$ микросхема без трансформатора (только выпрямители и конденсаторы), напряжение снижается, выпрямляется и сглаживается, ток ограничивает SMD-резистор, установленный на плате с диодами;
  • у фирменных лампочек у драйвера может быть одна из двух микросхем:
  • с импульсным трансформатором и стабилизатором;
  • с ЧИМ (частотно-импульсным модулятором) или ШИМ.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости «крутит ручку» резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании сверхмощных светодиодных прожекторов потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов 

Как изготовить драйвер для светодиодов своими руками

Для работы требуется:

  • маломощный
    паяльник (25-40 Вт);
  • флюс
    (желательно нейтральный);
  • оловянно-свинцовый
    припой;
  • кусачки
    и пласкогубцы;
  • многожильные
    медные провода в изоляции с сечением 0,35-1 м2;
  • изолента
    (термоусадочная трубка);
  • мультиметр;
  • печатная
    плата.

Перечень компонентов зависит от того,
какой блок питания необходимо сделать.

Пример
расчета

Самая простая схема для подключения
светодиодов к источникам с низким напряжением. Прежде всего, рассчитывается
мощность блока, базируясь на параметры источников света. Вольтаж должен быть на
20-30% выше показателя подключаемой лампочки или ленты. На выходе напряжение
зависит от падения вольтажа на светодиоде.

Если нужно подключить 6 светодиодов, падение напряжения в которых 2 В (на каждом), требуется блок на 12 В и 300 мА при последовательном размещении. Чтобы подключить те же элементов в 2 параллельные линии, необходимы другие показатели – напряжение 6 В, ток 600 мА. Для таких диодов подойдет простой драйвер, состоящий из диодного моста, 2-х конденсаторов и резистора.

Диодный мост состоит из 4-х
разнонаправленные диодов, задача которых – превратить синусоидальный переменный
электроток в пульсирующий. К плюсу моста (со стороны входа) присоединяется пленочный
конденсатор, к минусу – сопротивление, параллельно –электролитический конденсатор
(для сглаживания перепадов напряжения). Значение электротока зависит от метода подключения
(если диодов несколько, их можно соединить последовательно или параллельно).

Для мощного
светодиода (например, 3Вт) подойдет стабилизатор-драйвер,
созданный на основе микросхемы LM317
и резистора. У стабилизатора LM317 постоянный вольтаж 1,25. Если лампа новая,
ей требуется ток 700 мА (максимальное значение). Чтобы рассчитать сопротивление
резистора, нужно напряжение разделить на ток:

1,25/0,7 = 1,78 Ом.

Такого резистора нет, поэтому нужно
купить элемент на 1,8 Ом.

Так как микросхема LM317 предназначена
для тока до 1,5 А, потребуется радиатор.

Драйвер для трех led по 1 Втможно
сделать из зарядного устройства мобильного телефона, если немного
усовершенствовать микросхему. Нужно снять корпус и выпаять имеющийся резистор и
припаять другой (на 5 кОм). Светодиоды соединить последовательно и подключить к
выходному каналу. Входные каналы заменить шнуром для присоединения к сети.

Для светодиодного источника с мощностью 10 Вт можно собрать блок питания на электронной плате люминесцентной лампы на 20 Вт. Купить нужно дроссели, диоды, конденсаторы и транзисторы.

Важные нюансы сборки

Падение напряжения на светодиодах 3-30 В.
Это очень мало, если сравнивать с вольтажом сети. Готовые микросхемы отличаются
только показателями входного напряжения. При выборе необходимо учесть, что
падения напряжения на источниках света должно составлять 10-20% от вольтажа драйвера.
Поэтому не стоит делать на основе микросхемы блок для подключения к сети, если
имеется 1 или 2 диода на 3-6 В.

Все элементы на плате размещаются так, чтобы между ними было минимальное расстояние и количество перемычек. Полярность и распиновку лучше проверить в технической документации. Если элементы не новые, обязательна проверка мультиметром. Паяльник лучше выбрать небольшой, способный нагреваться до 260оС.

Конденсаторы, резисторы, диоды,
микросхемы паять достаточно сложно, если их нельзя предварительно закрепить на
плате. Чтобы повысить качество пайки, желательно залудить места, куда будут
ставиться компоненты. Для этого капается немного флюса, на паяльник берется
припой и наносится на то же место.

Каждый элемент нужно брать пинцетом за
ножку, которую нужно припаять, и приставить к месту пайки. Потом на ножку
наносится капля флюса, берется паяльник и подносится к припаиваемой ножке.
Прикоснуться достаточно примерно на секунду, так как припой и флюс уже есть.
Ножка сразу погружается в припой, нанесенный в процессе лужения.

Если элементы можно закрепить на плате,
припой должен быть с флюсом. В одну руку нужно взять паяльник, в другую –
проволоку. Место пайки греется 3-4 секунды, потом к нему подносится припой. При
соприкосновении элемента, паяльника и проволоки последняя плавится, флюс
вытекает, через секунду паяльник можно убрать.

Одновременно с паяльником желательно купить специальный отсос и очки. Если случится, что элемент припаялся не туда или на месте пайки образовался огромный бугор, нужно разогреть припой, взять отсос и нажать на кнопку. Все лишнее с платы моментально исчезнет. При работе с проводами и ножками элементов они могут отпружинить. Чтобы горячий припой не попал в глаза, работать желательно в очках.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий